qghappy和estar3

  • <tr id='VW6IvS'><strong id='VW6IvS'></strong><small id='VW6IvS'></small><button id='VW6IvS'></button><li id='VW6IvS'><noscript id='VW6IvS'><big id='VW6IvS'></big><dt id='VW6IvS'></dt></noscript></li></tr><ol id='VW6IvS'><option id='VW6IvS'><table id='VW6IvS'><blockquote id='VW6IvS'><tbody id='VW6IvS'></tbody></blockquote></table></option></ol><u id='VW6IvS'></u><kbd id='VW6IvS'><kbd id='VW6IvS'></kbd></kbd>

    <code id='VW6IvS'><strong id='VW6IvS'></strong></code>

    <fieldset id='VW6IvS'></fieldset>
          <span id='VW6IvS'></span>

              <ins id='VW6IvS'></ins>
              <acronym id='VW6IvS'><em id='VW6IvS'></em><td id='VW6IvS'><div id='VW6IvS'></div></td></acronym><address id='VW6IvS'><big id='VW6IvS'><big id='VW6IvS'></big><legend id='VW6IvS'></legend></big></address>

              <i id='VW6IvS'><div id='VW6IvS'><ins id='VW6IvS'></ins></div></i>
              <i id='VW6IvS'></i>
            1. <dl id='VW6IvS'></dl>
              1. <blockquote id='VW6IvS'><q id='VW6IvS'><noscript id='VW6IvS'></noscript><dt id='VW6IvS'></dt></q></blockquote><noframes id='VW6IvS'><i id='VW6IvS'></i>
                當前位置: 首頁 > 學術活動 > 正文
                Periodicities in chromatic homotopy theory at the prime 2
                時間:2023年05月23日 14:44 點擊數:

                報告人:李谷川

                報告地點:數統樓二樓會∴議室

                報告時間:2023年05月27日星期六16:30-17:30

                邀請人:陳亮

                報告摘要:

                Chromatic homotopy theory uses the algebraic geometry of smooth 1-parameter formal groups to separate stable homotopy theory into periodic layers. The 1st layer recovers the image of Adams’ J homomorphism and the real Bott periodicity of the real topological K-theory KO. In this talk, I will present a generalization of the real Bott periodicity of KO to general layers at prime 2. The proof takes inspiration from the breakthroughs of Hill—Hopkins—Ravenel’s solution to Kervaire invariant one problem. This is based on joint works with Zhipeng Duan, XiaoLin Danny Shi, Guozhen Wang, and Zhouli Xu.

                主講人〖簡介:

                李谷川,北京⌒ 大學助理教授,博士畢業於美國西ζ北大學,先後在丹麥哥本哈根大♂學和美國密西根仙靈之力低聲笑道大學安娜堡任博士後】。主要mg4377娱乐电子游戏网站方向為代數拓」撲◤,mg4377娱乐电子游戏网站成果爪影狠狠朝那死神傀儡抓了下去在Advances in Mathematics等期刊發表。

                ?2019 東北師範大學新mg官网电子游戏 版權所有

                地址:吉林省長春『市人民大街5268號 郵編:130024 電話:0431-85099589 傳真:0431-85098237


                "mg4355电子娱乐网址,mg4377娱乐电子游戏网站,新mg官网电子游戏"jamiecody.com

                "mg4355电子娱乐网址,mg4377娱乐电子游戏网站,新mg官网电子游戏"jamiecody.com